
06/09/2021 Editing Do You Read Excel Files with Python? There is a 1000x Faster Way. – Medium

https://medium.com/p/407d07ad0ed8/edit 1/9

Making Sense of Big Data

Do You Read Excel Files with Python?
There is a 1000x Faster Way.
In this article, I’ll show you five ways to load data in
Python. Achieving a speedup of 3 orders of magnitude.

As a Python user, I use excel files to load/store data as business people

like to share data in excel or csv format. Unfortunately, Python is

especially slow with Excel files.

In this article, I’ll show you five ways to load data in Python. In the end,

we’ll achieve a speedup of 3 orders of magnitude. It’ll be lightning-fast.

Edit (18/07/2021): I found a way to make the process 5 times faster
(resulting in a 5000x speedup). I added it as a bonus at the end of the

article.

Experimental Setup
Let’s imagine that we want to load 10 Excel files with 20000 rows and

25 columns (that’s around 70MB in total). This is a representative case

where you want to load transactional data from an ERP (SAP) to

Python to perform some analysis.

Source: https://www.hippopx.com/, public domain

https://medium.com/r/?url=https%3A%2F%2Ftowardsdatascience.com%2Ftagged%2Fmaking-sense-of-big-data
https://medium.com/r/?url=https%3A%2F%2Fwww.hippopx.com%2F

06/09/2021 Editing Do You Read Excel Files with Python? There is a 1000x Faster Way. – Medium

https://medium.com/p/407d07ad0ed8/edit 2/9

Let’s populate this dummy data and import the required libraries (we’ll

discuss pickle and joblib later in the article).

import pandas as pd

import numpy as np

from joblib import Parallel, delayed

import time

for file_number in range(10):

 values = np.random.uniform(size=(20000,25))

 pd.DataFrame(values).to_csv(f”Dummy {file_number}.csv”)

 pd.DataFrame(values).to_excel(f”Dummy {file_number}.xlsx”)

 pd.DataFrame(values).to_pickle(f”Dummy
{file_number}.pickle”)

5 Ways to Load Data in Python

Idea #1: Load an Excel File in Python
Let’s start with a straightforward way to load these files. We’ll create a

first Pandas Dataframe and then append each Excel file to it.

start = time.time()

df = pd.read_excel(“Dummy 0.xlsx”)

for file_number in range(1,10):

 df.append(pd.read_excel(f”Dummy {file_number}.xlsx”))

end = time.time()

print(“Excel:”, end — start)

>> Excel: 53.4

1

2

3

4

5

6

7

import pandas as pd

import numpy as np

from joblib import Parallel, delayed

import time

for file_number in range(10):

 values = np.random.uniform(size=(20000,25))

06/09/2021 Editing Do You Read Excel Files with Python? There is a 1000x Faster Way. – Medium

https://medium.com/p/407d07ad0ed8/edit 3/9

It takes around 50 seconds to run. Pretty slow.

Idea #2: Use CSVs rather than Excel Files
Let’s now imagine that we saved these files as .csv (rather than .xlsx)

from our ERP/System/SAP.

start = time.time()

df = pd.read_csv(“Dummy 0.csv”)

for file_number in range(1,10):

 df.append(pd.read_csv(f”Dummy {file_number}.csv”))

end = time.time()

print(“CSV:”, end — start)

>> CSV: 0.632

We can now load these files in 0.63 seconds. That’s nearly 10 times

faster!

Python loads CSV files 100 times faster than Excel files. Use CSVs.

Con: csv files are nearly always bigger than .xlsx files. In this

example .csv files are 9.5MB, whereas .xlsx are 6.4MB.

Idea #3: Smarter Pandas DataFrames
Creation

1

2

3

4

5

start = time.time()

df = pd.read_excel("Dummy 0.xlsx")

for file_number in range(1,10):

 df.append(pd.read_excel(f"Dummy {file_number}.xlsx"))

end = time.time()

A simple way to import Excel files in Python.

1

2

3

4

5

start = time.time()

df = pd.read_csv("Dummy 0.csv")

for file_number in range(1,10):

 df.append(pd.read_csv(f"Dummy {file_number}.csv"))

end = time.time()

Importing csv files in Python is 100x faster than Excel files.

06/09/2021 Editing Do You Read Excel Files with Python? There is a 1000x Faster Way. – Medium

https://medium.com/p/407d07ad0ed8/edit 4/9

We can speed up our process by changing the way we create our pandas

DataFrames. Instead of appending each file to an existing DataFrame,

We load each DataFrame independently in a list.

Then concatenate the whole list in a single DataFrame.

start = time.time()

df = []

for file_number in range(10):

 temp = pd.read_csv(f”Dummy {file_number}.csv”)

 df.append(temp)

df = pd.concat(df, ignore_index=True)

end = time.time()

print(“CSV2:”, end — start)

>> CSV2: 0.619

We reduced the time by a few percent. Based on my experience, this

trick will become useful when you deal with bigger Dataframes (df >>

100MB).

Idea #4: Parallelize CSV Imports with Joblib
We want to load 10 files in Python. Instead of loading each file one by
one, why not loading them all, at once, in parallel?

We can do this easily using joblib.

start = time.time()

def loop(file_number):

 return pd.read_csv(f”Dummy {file_number}.csv”)

df = Parallel(n_jobs=-1, verbose=10)(delayed(loop)
(file_number) for file_number in range(10))

df = pd.concat(df, ignore_index=True)

1.

2.

1

2

3

4

5

6

start = time.time()

df = []

for file_number in range(10):

 temp = pd.read_csv(f"Dummy {file_number}.csv")

 df.append(temp)

df = pd.concat(df, ignore_index=True)

A smarter way to import csv files in Python

https://medium.com/r/?url=https%3A%2F%2Fjoblib.readthedocs.io%2Fen%2Flatest%2Fparallel.html

06/09/2021 Editing Do You Read Excel Files with Python? There is a 1000x Faster Way. – Medium

https://medium.com/p/407d07ad0ed8/edit 5/9

end = time.time()

print(“CSV//:”, end — start)

>> CSV//: 0.386

That’s nearly twice as fast as the single core version. However, as a

general rule, do not expect to speed up your processes eightfold by

using 8 cores (here, I got x2 speed up by using 8 cores on a Mac Air

using the new M1 chip).

Simple Paralellization in Python with Joblib

Joblib is a simple Python library that allows you to run a function in //.

In practice, joblib works as a list comprehension. Except each iteration

is performed by a different thread. Here’s an example.

def loop(file_number):

 return pd.read_csv(f”Dummy {file_number}.csv”)

df = Parallel(n_jobs=-1, verbose=10)(delayed(loop)
(file_number) for file_number in range(10))

#equivalent to

df = [loop(file_number) for file_number in range(10)]

Idea #5: Use Pickle Files

1

2

3

4

5

start = time.time()

def loop(file_number):

 return pd.read_csv(f"Dummy {file_number}.csv")

df = Parallel(n_jobs=-1, verbose=10)(delayed(loop)(file_num

df = pd.concat(df, ignore_index=True)

Import CSV files in Python in Parallel using Joblib.

1

2

3

4

5

def loop(file_number):

 return pd.read_csv(f"Dummy {file_number}.csv")

df = Parallel(n_jobs=-1, verbose=10)(delayed(loop)(file_num

#equivalent to

Think as joblib as a smart list comprehension.

https://medium.com/r/?url=https%3A%2F%2Fjoblib.readthedocs.io%2Fen%2Flatest%2Fparallel.html

06/09/2021 Editing Do You Read Excel Files with Python? There is a 1000x Faster Way. – Medium

https://medium.com/p/407d07ad0ed8/edit 6/9

You can go (much) faster by storing data in pickle files — a specific

format used by Python — rather than .csv files.

Con: you won’t be able to manually open a pickle file and see what’s in

it.

start = time.time()

def loop(file_number):

 return pd.read_pickle(f”Dummy {file_number}.pickle”)

df = Parallel(n_jobs=-1, verbose=10)(delayed(loop)
(file_number) for file_number in range(10))

df = pd.concat(df, ignore_index=True)

end = time.time()

print(“Pickle//:”, end — start)

>> Pickle//: 0.072

We just cut the running time by 80%!

In general, it is much faster to work with pickle files than csv files. But,

on the other hand, pickles files usually take more space on your drive

(not in this specific example).

In practice, you will not be able to extract data from a system directly in

pickle files.

I would advise using pickles in the two following cases:

You want to save data from one of your Python processes (and you

don’t plan on opening it on Excel) to use it later/in another

process. Save your Dataframes as pickles instead of .csv

You need to reload the same file(s) multiple times. The first time

you open a file, save it as a pickle so that you will be able to load

the pickle version directly next time.

Example: Imagine that you use transactional monthly data (each

month you load a new month of data). You can save all historical

1.

2.

1

2

3

4

5

start = time.time()

def loop(file_number):

 return pd.read_pickle(f"Dummy {file_number}.pickle")

df = Parallel(n_jobs=-1, verbose=10)(delayed(loop)(file_num

df = pd.concat(df, ignore_index=True)

06/09/2021 Editing Do You Read Excel Files with Python? There is a 1000x Faster Way. – Medium

https://medium.com/p/407d07ad0ed8/edit 7/9

data as .pickle and, each time you receive a new file, you can load

it once as a .csv and then keep it as a .pickle for the next time.

Bonus: Loading Excel Files in Parallel
Let’s imagine that you received excel files and that you have no other

choice but to load them as is. You can also use joblib to parallelize this.

Compared to our pickle code from above, we only need to update the

loop function.

start = time.time()

def loop(file_number):

 return pd.read_excel(f"Dummy {file_number}.xlsx")

df = Parallel(n_jobs=-1, verbose=10)(delayed(loop)
(file_number) for file_number in range(10))

df = pd.concat(df, ignore_index=True)

end = time.time()

print("Excel//:", end - start)

>> 13.45

We could reduce the loading time by 70% (from 50 seconds to 13

seconds).

You can also use this loop to create pickle files on the fly. So that, next

time you load these files, you’ll be able to achieve lightning fast loading

times.

def loop(file_number):

 temp = pd.read_excel(f"Dummy {file_number}.xlsx")

 temp.to_pickle(f"Dummy {file_number}.pickle")

 return temp

1

2

3

4

5

start = time.time()

def loop(file_number):

 return pd.read_excel(f"Dummy {file_number}.xlsx")

df = Parallel(n_jobs=-1, verbose=10)(delayed(loop)(file_num

df = pd.concat(df, ignore_index=True)

How to load excel files using parallelization in Python.

06/09/2021 Editing Do You Read Excel Files with Python? There is a 1000x Faster Way. – Medium

https://medium.com/p/407d07ad0ed8/edit 8/9

Recap
By loading pickle files in parallel, we decreased the loading time from

50 seconds to less than a tenth of a second.

Excel: 50 seconds

CSV: 0.63 seconds

Smarter CSV: 0.62 seconds

CSV in //: 0.34 seconds

Pickle in //: 0.07 seconds

Excel in //: 13.5 seconds

Bonus #2: 4x Faster Parallelization
Joblib allows to change the parallelization backend to remove some

overheads. You can do this by giving prefer=”threads" to Parallel.

We obtain a speed of around 0.0096 seconds (over 50 runs with a 2021

MacBook Air).

Using prefer=”threads” with CSV and Excel parallelization gives the

following results.

As you can see using the “Thread” backend results in a worse score

when reading Excel files. But to an astonishing performance with

•

•

•

•

•

•

1

2

3

4

 def loop(file_number):

 return pd.read_pickle(f"Dummy {file_number}.pickle")

 df = Parallel(n_jobs=-1, verbose=0, prefer="threads")(dela

 df = pd.concat(df, ignore_index=True)

Using prefer=”threads” will allow you to run your process even faster.

06/09/2021 Editing Do You Read Excel Files with Python? There is a 1000x Faster Way. – Medium

https://medium.com/p/407d07ad0ed8/edit 9/9

pickles (it takes 50 seconds to load Excel files one by one, and only 0.01

seconds to load the data reading pickles files in //).

. . .

👉 Let’s connect on LinkedIn!

About the Author
icolas Vandeput is a supply chain data scientist specialized in

demand forecasting and inventory optimization. He founded his

consultancy company SupChains in 2016 and co-founded SKU Science 

— a fast, simple, and affordable demand forecasting platform — in

2018. Passionate about education, Nicolas is both an avid learner and

enjoys teaching at universities: he has taught forecasting and inventory

optimization to master students since 2014 in Brussels, Belgium. Since

2020 he is also teaching both subjects at CentraleSupelec, Paris,

France. He published Data Science for Supply Chain Forecasting in 2018

(2nd edition in 2021) and Inventory Optimization: Models and

Simulations in 2020.

N

https://medium.com/r/?url=https%3A%2F%2Fwww.linkedin.com%2Fin%2Fvandeputnicolas%2F
https://medium.com/r/?url=http%3A%2F%2Fwww.supchains.com%2F
https://medium.com/r/?url=https%3A%2F%2Fbit.ly%2F3ozydFN
https://medium.com/r/?url=https%3A%2F%2Fwww.amazon.com%2FData-Science-Supply-Chain-Forecasting%2Fdp%2F3110671107
https://medium.com/r/?url=https%3A%2F%2Fwww.amazon.com%2FInventory-Optimization-Simulations-Nicolas-Vandeput%2Fdp%2F3110673916

