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Machine Learning for Supply Chain 
Forecasting
How can you use Machine Learning to forecast demand 
in supply chains?

. . .

The article below is an extract from my book Data Science for Supply 

Chain Forecast, available here. You can find my other publications here. I 

am also active on LinkedIn.

. . .

What is machine learning?
Supply chain practitioners usually use old-school statistics to predict 

demand. But with the recent rise of machine learning algorithms, we 

have new tools at our disposal that can easily achieve excellent 

performance in terms of forecast accuracy for a typical industrial 

demand dataset. These models will be able to learn many relationships 

that are beyond the ability of traditional statistical models. For 
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example, how to add external information (such as the weather) to a 

forecast model.

Traditional statistical models use a predefined model to populate a 

forecast based on historical demand. The issue is that these models 

couldn’t adapt to historical demand. If you use a double exponential 

smoothing model to predict a seasonal product, it will fail to interpret 

the seasonal patterns. On the other hand, If you use a triple 

exponential smoothing model on a non-seasonal demand, it might 

overfit the noise of the demand and interpret it as a seasonality.

Machine learning is different: here, the algorithm (i.e., the machine) 

will learn relationships from a training dataset (i.e., our historical 

demand) and then be able to apply these relationships on new data. 

Whereas a traditional statistical model will use a predefined 

relationship (model) to forecast the demand, a machine learning 

algorithm will not assume a priori a particular relationship (like 

seasonality or a linear trend); it will learn these patterns directly from 

the historical demand.

For a machine learning algorithm to learn how to make predictions, we 

will have to show it both the inputs and the desired respective outputs. 

It will then automatically understand the relationships between these 

inputs and outputs.

Another critical difference between using machine learning and 

exponential smoothing models to forecast our demand is the fact that a 

machine learning algorithm will learn patterns from all our dataset. 

Exponential smoothing models will treat each item individually, 

independently of the others. A machine learning algorithm will learn 

patterns from all the dataset and will apply what works best to each 

product. One could improve the accuracy of an exponential smoothing 

model by increasing the length of each time series (i.e., providing more 

historical periods for each product). With machine learning, we will be 

able to increase the accuracy of our model by providing more products.

Welcome to the world of machine learning.

Machine learning for demand forecast
In order to make a forecast, the question we will ask the machine 

learning algorithm is the following:


Based on the last n periods of demand, what will the demand be 
during the next period(s)?
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We will train the model by providing it the data with a specific layout:


- n consecutive periods of demand as input.


- the demand for the very next period(s) as output.


Let’s see an example (with a quarterly forecast to simplify the table):

For our forecast problem, we will basically show our machine learning 

algorithm different extracts of our historical demand dataset as inputs 

and each time show what the very next demand observation was. In 

our example above, the algorithm will learn the relationship between 

the last four quarters of demand and the demand for the next quarter. 

The algorithm will learn that if we have 5, 15, 10 & 7 as the last four 

demand observations, the next demand observation will be 6, so that 

its prediction should be 6.

Most people will react to this idea with two very different thoughts. 

Either people will think that “it is simply impossible for a computer to 

look at the demand and make a prediction” or that “as of now, the 

humans have nothing left to do.” Both are wrong.

As we will see later, machine learning can generate very accurate 

predictions. And as the human controlling the machine, we still have to 

ask ourselves many questions:


- Which data to feed the algorithm for it to understand the proper 

relationships.


- Which machine learning algorithm to use (there are many different 

ones!).


- Which parameters to use in our model. As you will see, each machine 

learning algorithm has some settings that we can tweak to improve its 

accuracy.

As always, there is no definitive one-size-fits-all answer. 

Experimentation will help you find what is best for your dataset.

https://www.amazon.com/Data-Science-Supply-Chain-Forecast/dp/1730969437
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Data preparation


The first step of any machine learning algorithm project is to clean and 

format the data correctly. In our case, we need to format the historical 

demand dataset to obtain one similar to the table shown above.

Naming convention During our data cleaning process, we will use the 

standard data science notation and call the inputs X and the outputs Y. 

Specifically, the datasets X_train & Y_train will contain all the 

historical demand we will use to train our algorithm (X_train being the 

inputs and Y_train the outputs). And the datasets X_test & Y_test will 

be used to test our model.

You can see on the table below an example of a typical historical 

demand dataset you should have at the beginning of a forecast project.

We now have to format this dataset to something similar to the first 

table. Let’s say for now that we want to predict the demand for a 

product during one quarter based on the demand observations of this 

product during the previous four quarters. We will populate the 

datasets X_train & Y_train by going through the different products we 

have and each time create a data sample with four consecutive quarters 

as X_train and the next quarter as Y_train. This way, the machine 

learning algorithm will learn the relationship(s) between one quarter 

of demand and the previous four.

You can see on the table below an illustration for the first iterations. To 

validate our model, we will keep Y3Q4 aside as a test set.

https://www.amazon.com/Data-Science-Supply-Chain-Forecast/dp/1730969437
https://www.amazon.com/Data-Science-Supply-Chain-Forecast/dp/1730969437
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This means that our training set won’t go until Y3Q4 as it is kept for 
the test set: the last loop will be used as a final test.

Our X_train and Y_train datasets will look like the table below:

Remember that our algorithm will learn relationships in X_train to 

predict Y_train. So we could write that as X_train -> Y_train.

The final test will be given to our tool via these X_test & Y_test datasets:

These are each time the four latest demand quarters we know for each 

item just before Y3Q4 (i.e., Y2Q4 to Y3Q3). That means that our 

algorithm won’t see these relationships during its training phase as it 

will be tested on the accuracy it achieved on these specific prediction 

exercises. We will measure its accuracy on this test set and assume its 

accuracy when predicting future demand will be similar.

Dataset length


It is important for any machine learning exercise to pay attention to 

how much data is fed to the algorithm. The more, the better. On the 

other hand, the more periods we use to make a prediction (we will call 

this x_len), the less we will be able to loop through the dataset. Also, if 

we want to predict more periods at once (y_len), it will cost us a part of 

https://www.amazon.com/Data-Science-Supply-Chain-Forecast/dp/1730969437
https://www.amazon.com/Data-Science-Supply-Chain-Forecast/dp/1730969437
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the dataset, as we need more data (Y_train is longer) to perform one 

loop in our dataset.

Typically, if we have a dataset with n periods, we will be able to make 

1+n-x_len-y_len runs through it.

loops = 1 + n- x_len- y_len

It is a best practice to keep at the very least enough runs to loop 

through two full years so that 23 + x_len + y_len ≤ n. This means that 

the algorithm will have two full seasonal cycles to learn any possible 

relationships. If it had just one, you would be facing high risks of 

overfitting.

Do It Yourself


Data collection


The dataset creation and cleaning is an essential part of any data 

science project. In order to illustrate all the models we will create in the 

next chapters, we will use the historical sales of cars in Norway from 

January 2007 to January 2017 as an example dataset. You can 

download this dataset here: www.supchains.com/download


You will get a csv file called norway_new_car_sales_by_make.csv. This 

dataset contains the sales of 65 car makers across 121 months. On 

average, a bit more than 140,000 new cars are sold in Norway per year 

so that the market can then be roughly estimated to be worth 4B$ if we 

assume that the price of a new car is, on average, around 30,000$ in 

Norway. This dataset is modest in terms of size, but it is big enough to 

be relevant to experiment with new models and ideas. Nevertheless, 

machine learning models might show better results on other bigger 

datasets.

Bring Your Own Data Set In the second part of the article, we will 

discuss how to apply a machine learning model to this example dataset. 

But what we are actually interested in is your own dataset. Do not 

https://medium.com/r/?url=http%3A%2F%2Fwww.supchains.com%2Fdownload
https://www.amazon.com/Data-Science-Supply-Chain-Forecast/dp/1730969437
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waste any time and already start to gather some historical demand data 

so that you can test the following models on your own historical 

demand data as we progress through the different topics. It is 

recommended that you start with a dataset with at least three years of 

data (5 would be better) and more than a hundred different products. 

The bigger, the better.


Training and test sets creation


We will make a first code to extract the data from this csv and format it 

with the dates as columns and the products as lines.

Note that we print the results in an excel file for later reference. It is 

always good practice to visually check what the dataset looks like to be 

sure the code worked as intended.

You can also define a function to store these steps for later use.

def import_data():

 data = pd.read_csv(“norway_new_car_sales_by_make.csv”)
 data[“Period”] = data[“Year”].astype(str) + “-” + 
data[“Month”].astype(str)

 data[“Period”] = 
pd.to_datetime(data[“Period”]).dt.strftime(“%Y-%m”)

 df = 
pd.pivot_table(data=data,values=”Quantity”,index=”Make”,colu
mns=”Period”,aggfunc=’sum’,fill_value=0)

 return df

# Load the CSV file (should be in the same directory) 

data = pd.read_csv(“norway_new_car_sales_by_make.csv”) 
 

# Create a column “Period” with both the Year and the Month 

data[“Period”] = data[“Year”].astype(str) + “-” + 
data[“Month”].astype(str) 

# We use the datetime formatting to make sure format is 
consistent 

data[“Period”] = 
pd.to_datetime(data[“Period”]).dt.strftime(“%Y-%m”) 

 

# Create a pivot of the data to show the periods on columns 
and the car makers on rows 

df = pd.pivot_table(data=data, values=”Quantity”, 
index=”Make”, columns=”Period”, aggfunc=’sum’, fill_value=0) 

 

# Print data to Excel for reference 

df.to_excel(“Clean Demand.xlsx”)
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Now that we have our dataset with the proper formatting, we can 

create our training and test sets. For this purpose, we will create a 

function datasets that takes as inputs:

df our initial historical demand;


 x_len the number of months we will use to make a prediction;


 y_len the number of months we want to predict;


 y_test_len the number of months we leave as a final test;

and returns X_train, Y_train, X_test & Y_test.

def datasets(df, x_len=12, y_len=1, y_test_len=12):

D = df.values

 periods = D.shape[1]

 

 # Training set creation: run through all the possible time 
windows

 loops = periods + 1 — x_len — y_len — y_test_len 

 train = []

 for col in range(loops):

 train.append(D[:,col:col+x_len+y_len])

 train = np.vstack(train)

 X_train, Y_train = np.split(train,[x_len],axis=1)

 

 # Test set creation: unseen “future” data with the demand 
just before

 max_col_test = periods — x_len — y_len + 1

 test = []

 for col in range(loops,max_col_test):
 test.append(D[:,col:col+x_len+y_len])
 test = np.vstack(test)

 X_test, Y_test = np.split(test,[x_len],axis=1)

 

 # this data formatting is needed if we only predict a 
single period

 if y_len == 1:

 Y_train = Y_train.ravel()

 Y_test = Y_test.ravel()

 

 return X_train, Y_train, X_test, Y_test

In our function, we have to use .ravel() on both Y_train and Y_test if we 

only want to predict one period at a time. 


 array.ravel() reduces the dimension of a NumPy array to 1D. 


Our function always creates Y_train and Y_test as 2D arrays (i.e., arrays 

with rows and columns). If we only want to predict one period at a 

time, these arrays will then only have one column (and multiple rows). 

Unfortunately, the functions we will use later will need 1D arrays if we 

want to forecast only one period.
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We can now easily call our new function datasets(df) as well as 

import_data().

import numpy as np

import pandas as pd

df = import_data()

X_train, Y_train, X_test, Y_test = datasets(df)

We now obtain the datasets we need to feed our machine learning 

algorithm (X_train & Y_train) and the datasets we need to test it 

(X_test & Y_test).

Note that we took y_test_len as 12 periods. That means we will test our 

algorithm over 12 different predictions (as we only predict one period 

at a time).


Forecasting multiple periods at once You can change y_len if you 

want to forecast multiple periods at once. You need to pay attention to 

keep y_test_len ≥ y_len; otherwise, you won’t be able to test all the 

predictions of your algorithm.

Regression Tree
As a first machine learning algorithm, we will use a decision tree. 

Decision trees are a class of machine learning algorithms that will 

create a map (a tree actually) of questions to make a prediction. We call 

these trees regression trees if we want them to predict a number or 

classification trees if we want them to predict a category or a label.

In order to make a prediction, the tree will start at its foundation with a 

first yes/no question; and based on the answer, it will continue asking 

new yes/no questions until it gets to a final prediction. Somehow you 

could see these trees like a big game of Guess Who? (the famous ’80s 

game): the model will ask multiple consecutive questions until it gets to 

a right answer.
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In a decision tree, each question is called a node. For example, in the 

figure above, ‘Does the person have a big nose?’ is a node. Each possible 

final answer is called a leaf. In the example above, each leaf contains 

only one single person. But that is not mandatory. You could imagine 

that multiple people have a big mouth and a big nose. In such case, the 

leaf would contain multiple values.

The different pieces of information that a tree has at its disposal to split 

a node are called the features. For example, the tree we had on the 

figure above could split a node on the three features Mouth, Nose, and 

Glasses.

How does it work?


To illustrate how our tree will grow, let’s take back our quarterly 

dummy dataset.

Based on this training dataset, a smart question to ask yourself to make 

a prediction is: Is the first demand observation > 7?

https://www.amazon.com/Data-Science-Supply-Chain-Forecast/dp/1730969437
https://www.amazon.com/Data-Science-Supply-Chain-Forecast/dp/1730969437
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This is a smart question as you know that the answer (Yes/No) will 

provide an interesting indication of the behavior of the demand for the 

next quarter. If the answer is yes, the demand we try to predict is likely 

to be rather high (>8), and if the answer is no, then the demand we try 

to predict is likely to be low (≤7).

Here is an example of a bad question.

This does not help as this question does not separate our dataset into 

two different subsets (i.e., there is still a lot of variation inside each 

subset). If the answer to the question Is the third demand observation 

<6? is yes, we still have a range of demand going from 1 to 11, and if 

the answer is no, the range goes from 4 to 13. This question is simply 

not helpful in forecasting future demand.

Without going too much into details of the tree’s mathematical inner 

workings, the algorithm to grow our tree will, at each node, choose a 

question (i.e., a split) about one of the available features (i.e., the 

previous quarters) that will minimize the prediction error across the 

two new data subsets. 


The first algorithm proposed to create a decision tree was published in 

1963 by Morgan and Sonquist in their paper “Problems in the Analysis of 

https://www.amazon.com/Data-Science-Supply-Chain-Forecast/dp/1730969437
https://www.amazon.com/Data-Science-Supply-Chain-Forecast/dp/1730969437
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Survey Data and a Proposal.” There are many different algorithms on 

how to grow a decision tree (many were developed since the ‘60s). 

They all follow the objective of asking the most meaningful questions 

about the different features of a dataset in order to split it into different 

subsets until some criterion is reached.

Parameters


It’s important to realize that without a criterion to stop the growth of 

our tree, it will grow until each data observation (otherwise called 

sample) has its own leaf. This is a terrible idea as even though you will 

have perfect accuracy on your training set, you will not be able to 

replicate these results on new data. We will limit the growth of our tree 

based on some criterion. Let’s take a look at the most important ones 

(we are already using the scikit-learn naming convention).

Max depth Maximum amount of consecutive questions (nodes) the 

tree can ask.


Min samples split Minimum amount of samples that are required in a 

node to trigger a new split. If you set this to 6, a node with only 5 

observations left won’t be split further. 


Min samples leaf Minimum amount of observations that need to be in 

a leaf. This is a very important parameter. The closer this is to 0, the 

higher the risk of overfitting, as your tree will actually grow until it asks 

enough questions to treat each observation separately. 


Criterion This is the KPI that the algorithm will minimize (either MSE 

or MAE).

Of course, depending on your dataset, you might want to give different 

values to these parameters. We will discuss how to choose the best 

parameters in the following chapter.

Do It Yourself


We will use the scikit-learn Python library (www.scikit-learn.org) to 

grow our first tree. This is a well-known open-source library that is 

used all over the world by data scientists. It is built on top of NumPy so 

that it interacts easily with the rest of our code.

The first step is to call scikit-learn and create an instance of a 

regression tree. Once this is done, we have to train it based on our 

X_train and Y_train arrays.

from sklearn.tree import DecisionTreeRegressor 

 

# — Instantiate a Decision Tree Regressor 

tree = DecisionTreeRegressor(max depth=5 min samples leaf=5)

https://medium.com/r/?url=http%3A%2F%2Fwww.scikit-learn.org


06/09/2021 Editing Machine Learning for Supply Chain Forecast – Medium

https://medium.com/p/66ef297f58f2/edit 13/14

Note that we created a tree with a maximum depth of 5 (i.e., a 

maximum of five yes/no consecutive questions are asked to classify one 

point), where each tree leaf has at minimum 5 samples.

We now have a tree trained to our specific demand history. We can 

already measure its accuracy on the training dataset.

# Create a prediction based on our model 

Y_train_pred = tree.predict(X_train) 

 

# Compute the Mean Absolute Error of the model 

import numpy as np

MAE_tree = np.mean(abs(Y_train — 
Y_train_pred))/np.mean(Y_train) 

 

# Print the results 

print(“Tree on train set MAE%:”,round(MAE_tree*100,1))

You should obtain an MAE of 15.1%. Now let’s measure the accuracy 

against the test set:

Y_test_pred = tree.predict(X_test) 

MAE_test = np.mean(abs(Y_test — 
Y_test_pred))/np.mean(Y_test) 

print(“Tree on test set MAE%:”,round(MAE_test*100,1))

We now obtain around 21.1%. This means that our regression tree is 

overfitted to the historical demand: we lost 6 points of MAE in the test 

set compared to the historical dataset.

Going further
There are many ways to improve this result further:


- Optimize the tree parameters.


- Use more advanced models (like a Forest, ETR, Extreme Gradient 

Boosting).


tree  DecisionTreeRegressor(max_depth 5,min_samples_leaf 5) 

 

# — Fit the tree to the training data 
tree.fit(X_train,Y_train)
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- Optimize the input data.


- Use external data.

All of these are explained in the book Data Science for Supply Chain 
Forecast (available on Amazon)
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